
Page 1 of 11

Zelle 4e Chapter 11 Coding Assignment

General Instructions
My expectations for your work on coding assignment exercises will grow as we progress
through the course. In addition to applying any new programming techniques that have
been covered in the current chapter, I will be expecting you to follow all of the good
programming practices that we have adopted in the preceding weeks. Here is a quick
summary of good practices that we have covered so far:

• Include a Python Docstring that describes the intent of the program.
• Place your highest-level code in a function named main.
• Include a final line of code in the program that executes the main function.
• Follow all PEP-8 Python coding style guidelines enforced by the PyCharm Editor.

For example, place two blank lines between the code making up a function and
the code surrounding that function.

• Choose names for your variables that are properly descriptive.
• Define CONSTANT_VALUES and use them in place of magic numbers.
• Always use f-strings for string interpolation and number formatting.
• When processing items from Python lists and tuples, unpack the values into

variables with meaningful variable names to avoid using indexed expressions in
your code.

• Close all files before the conclusion of the program.
• Remember that your program should behave reasonably when it is not given any

input. This might be the result of the user pressing enter at a console prompt.
Or, it might be the result of the user providing an input file that is empty.

• Model your solution after the code that I demonstrate in the tutorial videos.
• Make sure that your test input/output matches the sample provided.
• Create a sub-directory named data within your PyCharm project to hold data

files.
• Remember to submit all data files with your PyCharm project – including the files

that were provided as starter files to this assignment.
• All functions that are not main() should have descriptive, action-oriented names.
• All functions should be of reasonable size.
• All functions should have high cohesion, and low coupling.
• Remember to test your program thoroughly before submitting your work.
• Your code must pass all relevant test cases. Make sure that it passes tests at the

boundaries created by if, else, and elif conditions in your program (boundary
value tests).

• Use of the break statement is allowed but not encouraged.
• Use of the continue statement is forbidden.
• Regular expression patterns should be expressed as Python raw strings
• Your finished code must be refactored to meet all good program design practices

covered in this course.

Page 2 of 11

• Your refactored code must be retested to demonstrate that refactoring has not
altered program functionality.

Page 3 of 11

Exercise 1 (Regular)
Create a program named going_to_boston.py. It should be modeled after the program
that I demonstrated in the tutorial (beat_that.py). Your program should be different in
the following respects:

1. Your program will simulate the playing of the dice game Going to Boston. For
game rules, see https://funattic.com/dice-games/ .

2. Your program will simulate a game for 2 players with the number of rounds

chosen by the user. Establish a minimum number of rounds that the user can
request (0) and a maximum number of rounds that they may request (1000).
Document these using Python constants. Use these constant values when
validating user entries associated with desired number of rounds.

3. If the user signals that they don’t want to play any rounds by just pressing enter,
or by entering 0 for rounds, do not simulate game play. Instead, make sure that
game play does not take place and that an appropriate message is printed. See
sample test output below.

4. When simulating game play, make all 3 of the rolls of the dice as specified by the
rules and choose highest values from the dice rolled. Do not shortcut this
process. The automated version of this game should simulate the way that
human players would play the game with actual dice. For game rules, see
https://funattic.com/dice-games/ .

5. When no rounds have been requested, do not report game play statistics.
Instead, report that no rounds were requested.

6. When reporting game results, take care to print text that is grammatically
correct. So, print “Player A has won 1 round.” rather than “Player A has won 1
rounds.”. See sample test output below.

7. When you have succeeded in demonstrating that your code passes all relevant
tests, then look for and exploit any refactoring opportunities. These
opportunities should include:

a. Eliminating duplicate code.
b. Eliminating dead code (code that is no longer used or has been

commented out).
c. Renaming variables, parameters, and functions.
d. Improving the interfaces of functions (parameters in, return values out)
e. Any changes that would make your code more readable, more testable,

or more maintainable.

Page 4 of 11

In this exercise, you should do extensive manual unit testing as documented below.
Automated unit testing for going_to_boston.py will be conducted in Exercise 2.

When running a test in which the user requests no rounds by pressing <Enter>, you
should expect the following input/output on your console:

Welcome to Going to Boston.

Please enter the number of rounds to be played (<Enter> to stop):
No rounds have been requested.

Come play again soon!

When running a test in which the user requests no rounds by entering 0, you should
expect the following input/output on your console:

Welcome to Going to Boston.

Please enter the number of rounds to be played (<Enter> to stop): 0
No rounds have been requested.

Come play again soon!

Page 5 of 11

When running a test in which the user enters unexpected values for the number of
rounds to be played, you should expect the following input/output on your console:

Welcome to Going to Boston.

Please enter the number of rounds to be played (<Enter> to stop): hi mom
An integer was expected. You entered hi mom.
Please enter the number of rounds to be played (<Enter> to stop): 2.2
An integer was expected. You entered 2.2.
Please enter the number of rounds to be played (<Enter> to stop): -1
A value between 0 and 1000 was expected. You entered -1.
Please enter the number of rounds to be played (<Enter> to stop): 1001
A value between 0 and 1000 was expected. You entered 1001.
Please enter the number of rounds to be played (<Enter> to stop): 2

Playing Round 1:
Player A's turn...
Player A rolls [2, 2, 3] and keeps 3.
Player A rolls [5, 1] and keeps 5.
Player A rolls and keeps 3.
==>Player A's turn score is 11
Player B's turn...
Player B rolls [1, 5, 6] and keeps 6.
Player B rolls [1, 4] and keeps 4.
Player B rolls and keeps 3.
==>Player B's turn score is 13
Player B wins the round!

Playing Round 2:
Player A's turn...
Player A rolls [3, 2, 3] and keeps 3.
Player A rolls [4, 3] and keeps 4.
Player A rolls and keeps 2.
==>Player A's turn score is 9
Player B's turn...
Player B rolls [6, 2, 3] and keeps 6.
Player B rolls [3, 2] and keeps 3.
Player B rolls and keeps 4.
==>Player B's turn score is 13
Player B wins the round!

Game Results:
Player A has won 0 rounds.
Player B has won 2 rounds.
Player B wins the game!

Come play again soon!

Page 6 of 11

The following console input/output depicts a typical run that includes a tie for a round:

Welcome to Going to Boston.

Please enter the number of rounds to be played (<Enter> to stop): 2

Playing Round 1:
Player A's turn...
Player A rolls [4, 6, 1] and keeps 6.
Player A rolls [6, 2] and keeps 6.
Player A rolls and keeps 4.
==>Player A's turn score is 16
Player B's turn...
Player B rolls [1, 5, 1] and keeps 5.
Player B rolls [3, 5] and keeps 5.
Player B rolls and keeps 6.
==>Player B's turn score is 16
The players tie the round.

Playing Round 2:
Player A's turn...
Player A rolls [5, 2, 6] and keeps 6.
Player A rolls [6, 4] and keeps 6.
Player A rolls and keeps 4.
==>Player A's turn score is 16
Player B's turn...
Player B rolls [3, 1, 1] and keeps 3.
Player B rolls [2, 3] and keeps 3.
Player B rolls and keeps 6.
==>Player B's turn score is 12
Player A wins the round!

Game Results:
Player A has won 1 round.
Player B has won 0 rounds.
Player A wins the game!

Come play again soon!

Page 7 of 11

The following console input/output depicts a typical run that includes a tie for the game:

Welcome to Going to Boston.

Please enter the number of rounds to be played (<Enter> to stop): 2

Playing Round 1:
Player A's turn...
Player A rolls [3, 6, 6] and keeps 6.
Player A rolls [3, 6] and keeps 6.
Player A rolls and keeps 6.
==>Player A's turn score is 18
Player B's turn...
Player B rolls [3, 3, 6] and keeps 6.
Player B rolls [1, 5] and keeps 5.
Player B rolls and keeps 4.
==>Player B's turn score is 15
Player A wins the round!

Playing Round 2:
Player A's turn...
Player A rolls [2, 5, 4] and keeps 5.
Player A rolls [2, 4] and keeps 4.
Player A rolls and keeps 1.
==>Player A's turn score is 10
Player B's turn...
Player B rolls [4, 5, 2] and keeps 5.
Player B rolls [5, 5] and keeps 5.
Player B rolls and keeps 4.
==>Player B's turn score is 14
Player B wins the round!

Game Results:
Player A has won 1 round.
Player B has won 1 round.
The players tie the game.

Come play again soon!

Page 8 of 11

The following console input/output depicts a typical run that does not include ties for
either a round or the game:

Welcome to Going to Boston.

Please enter the number of rounds to be played (<Enter> to stop): 3

Playing Round 1:
Player A's turn...
Player A rolls [2, 1, 1] and keeps 2.
Player A rolls [2, 2] and keeps 2.
Player A rolls and keeps 5.
==>Player A's turn score is 9
Player B's turn...
Player B rolls [2, 2, 3] and keeps 3.
Player B rolls [4, 1] and keeps 4.
Player B rolls and keeps 6.
==>Player B's turn score is 13
Player B wins the round!

Playing Round 2:
Player A's turn...
Player A rolls [2, 5, 3] and keeps 5.
Player A rolls [6, 2] and keeps 6.
Player A rolls and keeps 5.
==>Player A's turn score is 16
Player B's turn...
Player B rolls [2, 2, 5] and keeps 5.
Player B rolls [6, 5] and keeps 6.
Player B rolls and keeps 1.
==>Player B's turn score is 12
Player A wins the round!

Playing Round 3:
Player A's turn...
Player A rolls [5, 4, 6] and keeps 6.
Player A rolls [4, 5] and keeps 5.
Player A rolls and keeps 6.
==>Player A's turn score is 17
Player B's turn...
Player B rolls [3, 1, 2] and keeps 3.
Player B rolls [3, 2] and keeps 3.
Player B rolls and keeps 2.
==>Player B's turn score is 8
Player A wins the round!

Game Results:
Player A has won 2 rounds.

Page 9 of 11

Player B has won 1 round.
Player A wins the game!

Come play again soon!

Page 10 of 11

Exercise 2 (Challenge)
In this exercise, create a full set of automated unit tests for going_to_boston.py using
Pytest. Using the approach that I demonstrated in the tutorial, start testing functions in
going_to_boston.py at the bottom of your program and continue by testing functions
progressively towards the top of your program until you reach functions that don’t lend
themselves to automated unit testing using our beginner Pytest techniques. Functions
that don’t lend themselves to beginner Pytest techniques include:

• The function that gets the desired number of rounds from the user.
• The function that prints the report.

When running your Pytest unit tests for going_to_boston.py, you should see output
similar to the following:

Page 11 of 11

Tools
Use PyCharm to create and test all Python programs.

Submission Method
Follow the process that I demonstrated in the tutorial video on submitting your work.
This involves:

• Locating the properly named directory associated with your project in the file
system.

• Compressing that directory into a single .ZIP file using a utility program.
• Submitting the properly named zip file to the submission activity for this

assignment.

File and Directory Naming
Please name your Python program files as instructed in each exercise. Please use the
following naming scheme for naming your PyCharm project:

 surname_givenname_exercises_zelle_4e_chapter_11

If this were my own project, I would name my PyCharm project as follows:

 trainor_kevin_exercises_zelle_4e_chapter_11

Use a zip utility to create one zip file that contain the PyCharm project directory.
The zip file should be named according to the following scheme:

 surname_givenname_exercises_zelle_4e_chapter_11.zip

If this were my own project, I would name the zip file as follows:

 trainor_kevin_exercises_zelle_4e_chapter_4e.zip

Due By
Please submit this assignment by the date and time shown in the Weekly Schedule.

Last Revised
2025-10-13

